النسبة بين الضغط الواقع وسلوک الإجهاد للمواد النسجية ( الخيوط و الأقمشة )

نوع المستند : المقالة الأصلية

المؤلف

کلية الفنون التطبيقية جامعة دمياط

المستخلص

تتعدد البنية الهندسية للأقمشة المنسوجة والناتجة من عمليات التصنيع والإنتاج المختلفة ، والتى بدورها تعمل على إيجاد تموجات لخيوط السداء و اللحمة ليست موحدة داخل المنسوج ، وترجع نسبة التموج على عدة عوامل منها ؛ طبيعة المادة النيسجية و نوع الترکيب النسجى ، وعملية النسيج ومعدل الشدد الواقع عليها ، وعمليات التجهيز.، وبتطبيق القوى الواقعة على المنسوج فى تلک المراحل ، فإن المواد النسيجية يحدث لها إجهاد معين ناتج عن الجهد التى تعرضت إليه بمقدار معين حيث يتم تطبيق قوى معينة على مساحة معينة من القماش ، والتي تعرف بإسم خاصية الإجهاد. وتتضح هذه الخاصية بشکل أفضل بمواد النسيج ذو المرونة العالية ، حيث أن هذه الخاصية هي واحدة من الخواص المحددة للإستخدام النهائي للمواد النسيجية . و تحتوي العلاقة بين الضغط الواقع على المواد النسيجية والإجهاد الناتج عن تلک الخاصية على العديد من العوامل التى تؤثر وتتأثر بها مثل مقدار القوة الواقعة ، المنطقة المتأثرة بالأجهاد الواقع ، معدل الوقت لعملية الأجهاد ، سلوک المادة بعد الإجهاد ، الإختبارات المعملية الازمة لقياس معدل الأجهاد للمواد النسيجية ،وهذا ما سوف يتم تناوله بهذه الورقة البحثية. حيث أن الهدف الرئيسي من هذا الموجز هو فهم أساسيات تشوه المواد النسيجية تحت معدلات الإجهاد وتوضيح مدى تغير بنية وسلالة المواد النسيج تبعا لهذه الخاصية . ومن النتائح المستخرجة أنه يتطلب الاستکشاف والفحص في سلوک الإجهاد النسيجي المزيد من الأختبارات حيث أنه لا يمکننا تأکيد أو إنکار وجود سلوک إجهاد موحد لنوع واحد من المواد النسيجية ، ولکن من المُفترض أن يتم تصنيف هذه البيانات لکل تجربة على حدة تبعا لتصمميم التجربة الموضوعة للقياس .

الكلمات الرئيسية

الموضوعات الرئيسية


  1. Reference & Literature Cited:

    1.Abhishek S, Samir. O. M, Annadurai .V, Gopalkrishne. Urs R, Mahesh.S.S & Somashekar. R,(2005). Role of micro-crystalline parameters in the physical properties of cotton fibers, European Polymer Journal, 41(12) : 16–22.

    2.Ahmed Ramadan & Mohamed Ezzat.(2019) .Shear Properties of Apparel Fabrics Using Different Spun Yarns, Egyptian Journal of Chemistry, 62(8) : 1413 – 1418.

    3.Aklonis. J J & MacKnight W J.(1983). Introduction to polymer viscoelasticity, New York , John Wiley and Sons.

    4.Anadjiwala& Rajesh & G.A.V Leaf. (1991). Large-Scale Extension and Recovery of Plain Woven Fabrics Part II: Experimental and Discussion, Textile Research Journal, 61)12):743-755.

    5.Ariyama.T. (1994).Viscoelastic-plastic deformation behavior of polypropylene after cyclic preloading, Polymer Engineering & Science, 34 (17): 19–26.

    6.Azita Asayesh, Sheyda Sadat, Mirjalali Bandari& Masoud Latifi. (2020). The effect of fabric structure and strain percentage on the tensile stress relaxation of rib weft knitted fabrics, Fibers and Polymers, 21 (4) : 921-929.

    7.B K Behera  & P K Hari (2010). Woven textile structure Theory and applications. 1st Edition Woodhead publishing series in textile , Cambridge, England

    8.B. Gross. (1947). On Creep and Relaxation, Journal of Applied Physics, 18 (2) :12-221.

    9.Balasubramanian P & Salhotra K R. (1985) .Effect of strain rate on yarn tenacity, Textile Research Journal, 55 (74).

    1. Baltussen. J. J. M. & Northolt. M. G. (2001). The viscoelastic extension of polymer fibres: creep behavior, Polymer journal, 42(8).
    2. Batra. S. K. (1974).A generalized model for crimp analysis of multi-component fibers. Part II: An illustrative example, Textile Research Journal. 44(5).
    3. Batra. S. K.(1974) .A generalized model for crimp analysis of multi-component fibers. Part I: Theoretical development, Textile Research Journal, 44 (5): 377–85.
    4. Behre. B. (1961).Mechanical properties of textile fabrics part I: shearing, Textile Research Journal, 3 (2): 87–99.
    5. Beil .N.B. & Roberts. W.W. (2002).Modeling and computer simulation of the compressional behavior of fiber assemblies. Part II: Hysteresis, crimp, and orientation effects, Textile Research Journal, 72 (5) :375–82.
    6. Chapman.B.M.(1971).An apparatus for measuring bending and torsional stress–strain–time relations of single fibres, Textile Research Journal, 41(8) :5–7.
    7. Chen.X. & Potiyaraj. P. (1999).CAD/CAM of the orthogonal and angle-interlock woven structures for industrial applications, Textile research journal, 69 (9) : 648.
    8. Chen.X. & Wang H. (2006). Modeling and computer aided design of 3D hollow woven fabrics, Journal of textile institute, 97 (1).
    9. D.W. Lloyd and J.W.S. Hearle, (1977). An examination of a wide-jaw test for the determination of fabric Poisson ratios, The Journal of the Textile Institute, 68 (9):299-302.
    10. Emil Černoša, Helena Gabrijelčič, & Krste Dimitrovski.(2008). Influence of weave and weft characteristics on tensile properties of fabrics, fibers & textile in eastern Europe, 16 (2).
    11. Esra KARACA, Sunay OMEROGLU & Behcet BECERIR.(2015). Effects of fiber cross-sectional shapes on tensile and tearing properties of polyester woven fabric, Textile and Apparel journal, 25(4).
    12. Fangnisscu. N, Abd el Fattah .S & B. S. Gupta. (1997). A Generalized Model for Predicting Load-Extension Properties of Woven Fabrics, Textile Research Journal, 67 (12): 806–874.
    13. Farrow. B. (1956). Extensometric and elastic properties of textile fibres', The Journal of the Textile Institute Transactions, 47:58.
    14. Frank C. Porter.(1991) .  Zinc Handbook: Properties, Processing, and Use In Design, CRC Press, England.
    15. G. E. Cusick. (1961).The Resistance of Fabrics to Shearing Forces: A Study of the Experimental Method due to Mörner and Eeg-Olofsson, Journal of the Textile Institute Transactions, 52 (9).
    16. Gabrijelčič, H., Černoša, E. & Dimitrovski, K. (2008). Influence of weave and weft characteristics on tensile properties of fabrics. Fibres & textiles in Eastern Europe,16     (2) :45-51.
    17. Grishanov. S, Meshkov. V. & Omelchenko .A. (2009).A topological study of textile structures. Part I: An introduction to topological methods, Textile Research Journal, 79( 8) :702–13.
    18. Grishanov. S, Meshkov.V & Omelchenko. A. (2009).A topological study of textile structures. Part II: Topological invariants in application to textile structures’, Textile Research Journal 79(9) : 822–36.
    19. Grosberg, P., & Park, B.J.(1966). The mechanical properties of woven fabrics, Part V: The Initial Modulus and the Frictional Restraint in Shearing of Plain Woven Fabrics, Textile Research Journal, 36(5) : 420-431.
    20. Grosberg. P. & Iype. C. (1999). Yarn production; theoretical aspects, wood head publishing, Cambridge, England.
    21. Grosberg. P. & Park. B. J. (1966). The mechanical properties of woven fabrics part I: The Initial load extension modulus of woven Fabrics, Textile Research Journal, 36 (1): 71–79.
    22. Grosberg. P. (1969). The tensile properties of woven fabrics. In: Structural Mechanics of Fibres, Yarns and Fabrics. John Wiley&Sons journal, 1: 339-354.
    23. Gross. B. & Fuoss. R. M. (1956).Ladder structures for representation of viscoelastic systems, Journal of Polymer Science, 19: 39–50.
    24. Gupta.V.B &Kumar. S. (1977).A model for nonlinear creep of textile fibres, Textile Research Journal, 47 (10): 647–9.
    25. Guthrie.J.C & Norman.S. (1961). Measurement of the elastic recovery of viscose rayon filaments', The Journal of the Textile Institute, 52: 503.
    26. H.M. Taylor.(1959) .Tensile and tearing strength of cotton cloths, The Journal of the Textile Institute,50: 161–187.
    27. Harrison. P. W. (1960) .The tearing strength of fabrics I. A review of the literature, The Journal of the Textile Institute, 51: 91.
    28. Hearle. J.W.S. & Sparrow .J. T. (1979), Mechanics of the extension of cotton fibers. Part. I. Experimental studies of the effect of convolutions’, Journal of Applied Polymer Science, 24(6): 1465.
    29. Hearle. J.W.S. & Sparrow .J. T. (1979). Mechanics of the extension of cotton fibers.    Part II. Theoretical modeling, Journal of Applied Polymer Science, 24 (8) : 1857.
    30. Hearle. J.W.S. (1965).Theoretical analysis of the mechanics of twisted staple fiber yarns  , Textile Research Journal, 35(12) :1060-1071
    31. Hearle. J.W.S. (1967), The structural mechanics of fibers, Journal of  Polymer Science , Part C, Journal of Polymer Science, 20 (1).
    32. Hearle. J.W.S. (1991).Understanding and control of textile fibre structure, Journal of Applied Polymer Science, 47(1).
    33. Hearle. J.W.S. (2005).A total model for stress-strain of wool and hair, Proceedings 11th International Wool Research Conference, Leeds.
    34. Hearle. J.W.S. Grosberg. P. & Backer. S. (1969). Structural mechanics of fibers, yarns and fabrics, Wiley-Inter science, New York.
    35. Hu.J. (2004). Structure and mechanics of woven fabrics. Structure and mechanics of woven fabrics, Woodhead  Publishing Ltd and CRC Press LLC, Cambridge England
    36. Hu.J.L. & Newton. A. (1993). Modelling of tensile stress–strain curves of woven fabrics, Journal of  China Textile University, 4: 49–61.
    37. Hu.J.L. (1994).Structure and Low Stress Mechanics of Woven Fabrics PhD thesis, The University of Manchester, United Kingdom, England.
    38. Ima Jean Dunn. (1968). Visco elastic behavior of woven fabrics, PhD thesis, Purdue University, USA.
    39. J. Thanikai Vimal, C.Prakash & A. Jebastin Rajwin. (2018) .Effect of Weave Parameters on the Tear Strength of Woven Fabrics, Journal of Natural Fibers, 15 (3).
    40. Jone Skelton. (1976).Fundamentals of fabric shear, Textile Research Journal, 46: 862–869.
    41. Kageyama .M, Kawabata. S. & Niwa. M. (1988).The validity of linearizing method for predicting the biaxial-extension properties of fabrics, The Journal of the Textile Institute, 79(4), 543–565.
    42. Kawabata. S. (1972). Kawabata’s Evaluation System for Fabric (KES-FB) Manual, Kyoto, Kato Tech Co Ltd. Japan.
    43. Kemp.A. (1958). An extension of Peirce's cloth geometry to the treatment of non-circular heads. The Journal of the Textile Institute, 49(1): 44-48.
    44. Kilby. W. F. (1963).Planar stress–strain relationships in woven fabrics, The Journal of the Textile Institute, 54: 9–27.
    45. Krifa. M. (2006).Fiber length distribution in cotton processing: dominant features and interaction effects, Textile Research Journal, 76(5): 426–35.
    46. Krifa. M. (2008).Fiber length distribution in cotton processing: a finite mixture distribution model, Textile Research Journal, 78(8): 688–98.
    47. Lawrence. C. A. (2003). Fundamentals of spun yarn technology, Woodhead Publishing, Cambridge, England.
    48. Leaf .G A & Chen. Y. (1993).The initial bending behavior of plain woven fabrics, Journal of textile institute, 84:419.
    49. Leaf, G. A. & Kandil, K. H. (1980). The initial load-extension behavior of plain-woven fabrics’, Journal of textile institute 71(1).
    50. Leaf. G. A. & Sheta. A .M. (1984). The initial shear modulus of plain-woven fabrics’, Journal of textile institute, 75(3) : 157.
    51. Lo W M, Hu J L & Lo M. (1999a), Bending hysteresis of twill woven fabrics in various directions Journal of Donghua University (English Edition), 16(3): 37-41.
    52. Lo Wing Man. (2001) . A study of fabric anisotropy, PhD Thesis, the Hong Kong Polytechnic University.
    53. Lord P R. (2003).Handbook of yarn production, Woodhead Publishing, Cambridge, England.
    54. Mary, L. & Ralf, S. (1994).Identifying local deformation phenomena during woven fabric uniaxial tensile loading, Textile Research Journal, 64(3):135-141.
    55. Meredith R. (1954). The Torsional Rigidity of Textile Fibres, Journal of the Textile Institute, 45(7).
    56. Meredith R. (1954).The torsional rigidity of textile fibres’, Journal of textile institute. 45 (7): 489-503.
    57. Mohammad Mubarak Hossain, Eshima Data & Salvia Rahman. (2016). A Review on Different Factors of Woven Fabrics, Strength Prediction, Science Research, 4(3).
    58. Mohsen Shane, Majid Safar, Mohammad Zarrebini, Marcin Barburski & Agnieszka Komisarczyk. (2019). Analysis of shear characteristics of woven fabrics and their interaction with fabric integrated structural factors, Journal of Engineered Fibers and Fabrics, 14: 1– 13.
    59. Morner, B. & Eeg-Olofsson T. (1957), Measurement of the shearing properties of fabrics, Textile Research Journal, 27: 611–614.
    60. Morton W E & Hearle J W S. (2008). Physical properties of textile fibres, 4th edition, Wood head Publishing, Cambridge, England.
    61. Nazanin Ezazshahabi & S. Mohammad Hosseini Varkiyani. (2020). A Review on the Poisson’s Ratio of Fabrics, Journal of textile and polymers, 8(1).
    62. Ning Pan, Radko Kovar, Mehdi Kamali & others. (2015). Origin of tensile strength of a woven sample cut in bias directions, Royal Society Open Science journal,  2(5).
    63. Ning Pan.(1996) . Analysis of woven fabric strength: prediction of fiber strength under uniaxial and biaxial extension, Composites Science and Technology,  56(3): 311-327.
    64. Oloffson, B. (1967). Study of inelastic deformations of textile fabrics, The Journal of the Textile Institute, 58: 211.
    65. Olausson, B. (1965). A general model of fabrics as a geometric-mechanical structure. The Journal of the Textile Institute, 55(11).
    66. P. Grosberg & B. J. Park. (1960). The Mechanical Properties of Woven Fabrics, Part V: The Initial Modulus and the Frictional Restraint in shearing of Plain Weave Fabrics, Textile Research Journal, 36 (5): 420-431.
    67. Peirce, F. T. (1947).Geometrical principles applicable to the design of functional fabrics, Textile Research Journal, 17: 123.
    68. Peter Schwartz. (2019).Structure and Mechanicsof Textile Fibre Assemblies, 2st Edition the Textile Institute Book Series, Woodhead Publishing, Cambridge, England.
    69. Pierce, F.T. (1937). The geometry of cloth structure, The Journal of the Textile Institute, 28(3): 45-96.
    70. Polona Dobnik Dubrovski.(2010) .Woven Fabric Engineering, Sciyo, Intech Open Limited, London, United Kingdom.
    71. Prasad Potluri, David A Perez Ciurezu, Robert J Young. (2007). Biaxial shear testing of textile preforms for formability analysis, 16th international conference of composite materials.
    72. R. C. Dhingra, S. De Jong & R. Postle. (1981).The Low-Stress Mechanical Properties of Wool and Wool-Blend Woven Fabrics Textile Research Journal, 51(12): 759-768.
    73. Ray L G. (1947).Tensile and torsional properties of textile fibres’, Textile   Research Journal, 17(1):16–18.
    74. Realff, M. L., Seo, M. H., Boyce, M. C., Schwartz, P., & Backer, S. (1991). Mechanical properties of fabric woven from yarns produced by different spinning technologies: yarn failure as a function of gauge length. Textile Research Journal, 61(9),:517-530.
    75. Realff, M.L., Boyce, M.C, & Backer,S.(1997). A Micromechanical Model of the Tensile Behavior of Woven Fabric. Textile Research Journal, 67(6):445-459.
    76. Ron Postle. (2015). Fibrous Materials and Wearable Technologies in a Nonlinear, Interactive World, the 13th Asian Textile Conference Geelong, Australia: 30.
    77. S. Bais-Singh, R.D. Anandjiwala & C. Goswami. (1996) .Characterizing lateral contraction behavior of spun bonded nonwovens during uniaxial tensile deformation, Textile Research Journal, 66(3):131-140.
    78. Saville, B. (2002). Physical testing of textiles. Woodhead Publishing and CRC Press, Cambridge, England.
    79. Sergei Grishanov, Vadim Meshkov & Alexander Omelchenko. (2009). A Topological Study of Textile Structures. Part I: An Introduction Topological Methods, Textile Research Journal, 79(8):702–713.
    80. Sette S. & van Langenhove L. (2002). Optimizing the Fibre-to-Yarn Production Process: Finding a Blend of Fibre Qualities to Create an Optimal Price/Quality Yarn, Autex Reaearch Journal, 2 (2):57-63.
    81. Shanahan W J & Hearle J W S. (1978).An energy method for calculations in fabric mechanics, part II: examples of application of the method to woven fabrics, Journal of textile institute, 69(4):92.
    82. Shanahan W J, Lloyd D W & Hearle J W S .(1978). Characterizing the elastic behavior of textile fabrics in complex deformations, Textile Research Journal, 15 (48):495.
    83. Shi Zhong Cui & Shan Yuan Wang. (1999). Nonlinear Creep Characterization of Textile Fabrics, Textile Research Journal, 69 (12): 931-934.
    84. Taylor R A. (1986) .Cotton tenacity measurements with high speed instrument, Textile Research Journal, 56 (92).
    85. Vangheluwe L. (1992) .Influence of strain rate and yarn number on tensile Textile Research Journal, 62: 306-308.
    86. Virginijus Urbelis, Antanas Petrauskas & Ada Gulbinene. (2007). Stress Relaxation of Clothing Fabrics and Their Systems. Materials Science journal, 13 (4).    
    87. Walter K. Stone, Herbert F. Schiefer& George Fox. (1955). Stress-Strain Relationships in Yarns Subjected to Rapid Impact Loading: 1. Equipment, Testing Procedure, and Typical Results. Journal of Research of the National Bureau of Standards, 5 (4).
    88. Wayne Reitz. (1994).A review of “Zinc Handbook: Properties, Processing and Use in Design, Materials and Manufacturing Processes journal, 9(4).
    89. Womersley, J.R. (1937). The application of differential geometry to the study of the deformation of cloth under stress. The Journal of the Textile Institute, 28 (3): 97-112.

    94.  Tom Cassidy& Parikshit Goswami.(2017). Textile and Clothing Design Technology. 1st Edition. Boca Raton: CRC Press. Taylor & Francis group. London.

    100. Zulfiqar Ali Malik & Tanveer Hussain. (2011). Development of models to predict tensile strength of cotton woven Fabrics, Journal of Engineered Fibers and Fabrics 6 (4).