تطبيق تقييم دورة الحياة المقارن لمبنى مقترح لتقليل التأثيرات البيئية: عيادة مستشفى جامعة أسيوط کدراسة حالة

نوع المستند : المقالة الأصلية

المؤلف

أستاذ مساعد بقسم العمارة، کلية العمارة والتخطيط، جامعة القصيم، القصيم 52571، المملکة العربية السعودية

المستخلص

على الرغم من أن المباني لها فوائد عديدة، إلا أن صناعة البناء تمثل حاجزًا کبيرًا أمام تنفيذ الخطط البيئية الإستراتيجية. على وجه التحديد، في مصر باعتبارها واحدة من البلدان النامية، يستهلک قطاع تشييد المباني حوالي 40٪ من المواد الخام العالمية المستخرجة، طبقا لتقرير معهد الموارد العالمية لعام 2015. علاوة على ذلک، تمتلک الصناعات التحويلية وعمليات البناء 23٪ من جميع أنشطة احتراق الوقود ولديها 22 من جميع انبعاثات غازات الدفيئة (غازات الاحتباس الحراري) وفقًا لتحديث تقرير BIENNIAL، طبقا لوزارة البيئة المصرية لعام 2018. هذه الورقة هي واحدة من مجموعة الأوراق العلمية التي سيتم تقديمها لتطبيق منهجية تکامل تقييم دورة الحياة (Life Cycle Assessment) ونمذجة معلومات البناء (Building Information Modelling) على عيادة صحية کمبنى مقترح في مستشفى جامعة أسيوط بمدينة أسيوط - مصر. أظهرت النتائج أن الآثار البيئية الضارة الرئيسية هي المواد غير العضوية في الجهاز التنفسي، بالإضافة إلى ظاهرة الاحتباس الحراري، والطاقة غير المتجددة کطريقة نصفية بيئية(Midpoint method) ، بالإضافة إلى صحة الإنسان واستنفاد الموارد کطريقة نهائية بيئية(Endpoint method) . على وجه الخصوص، فإن نتائج غازات الاحتباس الحراري لصناعة الحديد والخرسانة والطوب والبلاط هي (3.4E5) و(2.55E5) و(9.67E4) و(4.31E4) کيلو جرام من ثاني أکسيد الکربون المکافئ (kg 〖CO〗_2 equivalent) على التوالي کنتيجة نصفية بيئية. بالنسبة للطريقة نهائية بيئية، أظهرت نتائج الترجيح أن صحة الإنسان واستنفاد الموارد سجلت أکبر الأرقام، بالإضافة إلى أن صناعات الحديد والخرسانة والطوب والبلاط لها أعباء بيئية هائلة. بالإضافة إلى ذلک، لخصت الورقة أن هناک حاجة ملحة لإدخال بدائل مستدامة من مواد البناء خاصة وأن هذه الصناعات تنبعث منها العديد من الانبعاثات مثل ثاني أکسيد الکربون والجسيمات الدقيقة وثاني أکسيد الکبريت وغاز الايثلين. في النهاية، قدمت الورقة توصيات مستقبلية لکل من المباني المقترحة والمباني القائمة.

الكلمات الرئيسية

الموضوعات الرئيسية


  • References

    • Al-Ghamdi, S. G., & Bilec, M. M. (2017). Green Building Rating Systems and Whole-Building Life Cycle Assessment: Comparative Study of the Existing Assessment Tools. Journal of Architectural Engineering, 23(1), 1–9. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000222
    • Ali, A. A. M. M., Negm, A. M., Bady, M. F., Ibrahim, M. G. E., & Suzuki, M. (2016). Environmental impact assessment of the Egyptian cement industry based on a life-cycle assessment approach: a comparative study between Egyptian and Swiss plants. Clean Technologies and Environmental Policy, 18(4). https://doi.org/10.1007/s10098-016-1096-0
    • Ansah, M. K., Chen, X., Yang, H., Lu, L., & Lam, P. T. I. (2020). An integrated life cycle assessment of different façade systems for a typical residential building in Ghana. Sustainable Cities and Society, 53(November 2019), 101974. https://doi.org/10.1016/j.scs.2019.101974
    • Bahramian, M., & Yetilmezsoy, K. (2020). Life cycle assessment of the building industry: An overview of two decades of research (1995–2018). Energy and Buildings, 219, 109917. https://doi.org/10.1016/j.enbuild.2020.109917
    • Collinge, W., Landis, A. E., Jones, A. K., Schaefer, L. A., & Bilec, M. M. (2013). Indoor environmental quality in a dynamic life cycle assessment framework for whole buildings: Focus on human health chemical impacts. Building and Environment, 62, 182–190. https://doi.org/10.1016/j.buildenv.2013.01.015
    • Egyptian Ministry of Environment. (2017). State of the Environment Report 2017 Arab Republic of Egypt. http://www.eeaa.gov.eg/portals/0/eeaaReports/SoE-2017/Egypt SOE 2017 - SPM English.pdf
    • Eleftheriadis, S., Duffour, P., & Mumovic, D. (2018). BIM-embedded life cycle carbon assessment of RC buildings using optimised structural design alternatives. Energy and Buildings, 173, 587–600. https://doi.org/10.1016/j.enbuild.2018.05.042
    • Eleftheriadis, Stathis, Mumovic, D., & Greening, P. (2017). Life cycle energy efficiency in building structures: A review of current developments and future outlooks based on BIM capabilities. Renewable and Sustainable Energy Reviews, 67, 811–825. https://doi.org/10.1016/j.rser.2016.09.028
    • Hasik, V., Escott, E., Bates, R., Carlisle, S., Faircloth, B., & Bilec, M. M. (2019). Comparative whole-building life cycle assessment of renovation and new construction. Building and Environment, 161(May), 106218. https://doi.org/10.1016/j.buildenv.2019.106218
    • Hossain, M. U., & Thomas Ng, S. (2019). Influence of waste materials on buildings' life cycle environmental impacts: Adopting resource recovery principle. Resources, Conservation and Recycling, 142(October 2018), 10–23. https://doi.org/10.1016/j.resconrec.2018.11.010
    • Hu, M. (2019). Building impact assessment—A combined life cycle assessment and multi-criteria decision analysis framework. Resources, Conservation and Recycling, 150(March), 104410. https://doi.org/10.1016/j.resconrec.2019.104410
    • Ingrao, C., Messineo, A., Beltramo, R., Yigitcanlar, T., & Ioppolo, G. (2018). How can life cycle thinking support sustainability of buildings? Investigating life cycle assessment applications for energy efficiency and environmental performance. Journal of Cleaner Production, 201, 556–569. https://doi.org/10.1016/j.jclepro.2018.08.080
    • International Organization For Standardization (ISO). (1998). ISO - ISO 14041:1998 - Environmental management — Life cycle assessment — Goal and scope definition and inventory analysis. https://www.iso.org/standard/23152.html
    • International Organization For Standardization (ISO). (2000a). ISO - ISO 14042:2000 - Environmental management — Life cycle assessment — Life cycle impact assessment. https://www.iso.org/standard/23153.html
    • International Organization For Standardization (ISO). (2000b). ISO - ISO 14043:2000 - Environmental management — Life cycle assessment — Life cycle interpretation. https://www.iso.org/standard/23154.html
    • International Organization For Standardization (ISO). (2006). ISO - ISO 14040:2006 - Environmental management — Life cycle assessment — Principles and framework. https://www.iso.org/standard/37456.html
    • Janjua, S. Y., Sarker, P. K., & Biswas, W. K. (2020). Development of triple bottom line indicators for life cycle sustainability assessment of residential bulidings. Journal of Environmental Management, 264(November 2019), 110476. https://doi.org/10.1016/j.jenvman.2020.110476
    • Kamali, M., Hewage, K., & Milani, A. S. (2018). Life cycle sustainability performance assessment framework for residential modular buildings: Aggregated sustainability indices. Building and Environment, 138(March), 21–41. https://doi.org/10.1016/j.buildenv.2018.04.019
    • Khasreen, M. M., Banfill, P. F. G., & Menzies, G. F. (2009). Life-Cycle Assessment and the Environmental Impact of Buildings: A Review. Sustainability, 1(3), 674–701. https://doi.org/10.3390/su1030674
    • Kylili, A., Ilic, M., & Fokaides, P. A. (2017). Whole-building Life Cycle Assessment ( LCA ) of a passive house of the sub-tropical climatic zone. Resources, Conservation & Recycling, 116, 169–177. https://doi.org/10.1016/j.resconrec.2016.10.010
    • Lee, N., Tae, S., Gong, Y., & Roh, S. (2017). Integrated building life-cycle assessment model to support South Korea's green building certification system (G-SEED). Renewable and Sustainable Energy Reviews, 76(October 2015), 43–50. https://doi.org/10.1016/j.rser.2017.03.038
    • Llantoy, N., Chàfer, M., & Cabeza, L. F. (2020). A comparative life cycle assessment (LCA) of different insulation materials for buildings in the continental Mediterranean climate. Energy and Buildings, 225, 110323. https://doi.org/10.1016/j.enbuild.2020.110323
    • Llatas, C., Soust-Verdaguer, B., & Passer, A. (2020). Implementing Life Cycle Sustainability Assessment during design stages in Building Information Modelling: From systematic literature review to a methodological approach. Building and Environment, 182(July), 107164. https://doi.org/10.1016/j.buildenv.2020.107164
    • Mannan, M., & Al-Ghamdi, S. G. (2020). Environmental impact of water-use in buildings: Latest developments from a life-cycle assessment perspective. Journal of Environmental Management, 261(February), 110198. https://doi.org/10.1016/j.jenvman.2020.110198
    • Marique, A. F., & Rossi, B. (2018). Cradle-to-grave life-cycle assessment within the built environment: Comparison between the refurbishment and the complete reconstruction of an office building in Belgium. Journal of Environmental Management, 224(2018), 396–405. https://doi.org/10.1016/j.jenvman.2018.02.055
    • Martinopoulos, G. (2020). Are rooftop photovoltaic systems a sustainable solution for Europe? A life cycle impact assessment and cost analysis. Applied Energy, 257(August 2019), 114035. https://doi.org/10.1016/j.apenergy.2019.114035
    • Ministry of Environment, E. E. A. A. (2018). Egypt's first Biennial Update Report to the United Nations Framework Convenstion on Climate Change.
    • Najjar, M., Figueiredo, K., Hammad, A. W. A., & Haddad, A. (2019). Integrated optimisation with building information modelling and life cycle assessment for generating energy efficient buildings. Applied Energy, 250(January), 1366–1382. https://doi.org/10.1016/j.apenergy.2019.05.101
    • Oquendo-Di Cosola, V., Olivieri, F., Ruiz-García, L., & Bacenetti, J. (2020). An environmental Life Cycle Assessment of Living Wall Systems. Journal of Environmental Management, 254(November 2019), 109743. https://doi.org/10.1016/j.jenvman.2019.109743
    • Sedláková, A., Vilčeková, S., Burák, D., Tomková, Ž., Moňoková, A., & Doroudiani, S. (2020). Environmental impacts assessment for conversion of an old mill building into a modern apartment building through reconstruction. Building and Environment, 172(February). https://doi.org/10.1016/j.buildenv.2020.106734
    • Seyis, S. (2020). Mixed method review for integrating building information modelling and life-cycle assessments. Building and Environment, 173(January), 106703. https://doi.org/10.1016/j.buildenv.2020.106703
    • Su, S., Wang, Q., Han, L., Hong, J., & Liu, Z. (2020). BIM-DLCA: An integrated dynamic environmental impact assessment model for buildings. Building and Environment, 183(May), 107218. https://doi.org/10.1016/j.buildenv.2020.107218
    • Thibodeau, C., Bataille, A., & Sié, M. (2019). Building rehabilitation life cycle assessment methodology–state of the art. Renewable and Sustainable Energy Reviews, 103(January), 408–422. https://doi.org/10.1016/j.rser.2018.12.037
    • Tokede, O. O., Love, P. E. D., & Ahiaga-Dagbui, D. D. (2018). Life cycle option appraisal in retrofit buildings. Energy and Buildings, 178, 279–293. https://doi.org/10.1016/j.enbuild.2018.08.034
    • Weißenberger, M., Jensch, W., & Lang, W. (2014). The convergence of life cycle assessment and nearly zero-energy buildings: The case of Germany. Energy and Buildings, 76(2014), 551–557. https://doi.org/10.1016/j.enbuild.2014.03.028
    • World Resources Institute. (2015). Greenhouse Gas Emissions in Egypt. 2012, 2014–2015.
    • Wu, T., Gong, M., & Xiao, J. (2020). Preliminary Sensitivity Study on an Life Cycle Assessment (LCA) Tool via Assessing a Hybrid Timber Building. Journal of Bioresources and Bioproducts, 5(2), 108–113. https://doi.org/10.1016/j.jobab.2020.04.004
    • Xue, Z., Liu, H., Zhang, Q., Wang, J., Fan, J., & Zhou, X. (2020). The impact assessment of campus buildings based on a life cycle assessment-life cycle cost integrated model. Sustainability (Switzerland), 12(1), 1–24. https://doi.org/10.3390/su12010294