Experimental and applied study on the removal of polyurethane adhesive from the archaeological textiles

Document Type : Original Article

Author

Conservation Dept., Faculty of Archaeology, Damietta University, Egypt

Abstract

The objective of this work is to evaluate the efficacy of the gel and nanostructured fluids in the removal of polyurethane adhesive stuck to an archeological textile fragment that suffers from many deterioration forms. The study is divided into two sections; (a) in-vitro experiments, which were conducted on modern sheep woolen textile mock-ups after brushing with fresh polyurethane adhesive and accelerated aging. Three techniques were used in the removal of polyurethane from these mock-ups. Colorimeter, Fourier transform infrared spectroscopy, stereo microscope, and weight measurements were used to assess the selected experiments. The obtained results revealed that Nanorestore Cleaning®Polar fluid confined in Nanorestore Gel®Peggy is the most effective and suitable technique among the examined ones. (b) The applied section, which was assigned to using Nanorestore Cleaning®Polar fluid confined in Nanorestore Gel®Peggy in the removal of polyurethane adhesive from the case-study fragment, after identifying its fibers and dyes using a Fourier transform infrared spectroscopy and a high-performance liquid chromatography-diode array detector-mass spectrometry. The obtained results revealed using blank linen and sheep wool dyed with weld dye (beige color) and indigo natural dye (brown color). Beige and brown yarns were used in weaving the fragment background using the tapestry structure, and the beige wefts were used in the additional embroidery stitches. The used gel-confined fluid Nanorestore Cleaning®Polar fluid confined in Nanorestore Gel®Peggy was capable of the safe removal of the adhesive form the fragment, which was then washed and supported by a new linen fabric using thin needles and dyed silk threads. The fragment was finally re-exhibited in a standard museum display.

Keywords

Main Subjects


REFERENCES
1.     Gierenz, G.; Karmann, W., Adhesives and adhesive tapes. John Wiley & Sons: 2008.
2.     Bekhta, P.; Krystofiak, T.; Proszyk, S.; Lis, B., Adhesion strength of thermally compressed and varnished wood (TCW) substrate. Progress in Organic Coatings 2018, 125, 331-338.
3.     Yvonne, S., Conservation of Plastics: materials science, degradation and preservation. Butterworth-Heinemann, Slovenia: 2008.
4.     Coughlin, M.; Seeger, A. M., You collected what?! The risks and rewards of acquiring cellulose nitrate. Proceedings of plastics-looking to the future and learning from the past 2007, 119-124.
5.     van Aubel, C.; de Groot, S.; van Keulen, H.; Snijders, E., Digging into the past of nature carpets. The evaluation of treatments on artworks by Piero Gilardi made from polyurethane ether foam. Journal of Cultural Heritage 2019, 35, 271-278.
6.     Altafim, R. A. C.; Murakami, C. R.; Claro Neto, S.; Araújo, L. C. R.; Chierice, G. O., The effects of fillers on polyurethane resin-based electrical insulators. Materials Research 2003, 6 (2), 187-191.
7.     Trovati, G.; Sanches, E. A.; Neto, S. C.; Mascarenhas, Y. P.; Chierice, G. O., Characterization of polyurethane resins by FTIR, TGA, and XRD. Journal of Applied Polymer Science 2010, 115 (1), 263-268.
8.     Defeyt, C.; Langenbacher, J.; Rivenc, R., Polyurethane coatings used in twentieth century outdoor painted sculptures. Part I: comparative study of various systems by means of ATR-FTIR spectroscopy. Heritage Science 2017, 5 (1), 11.
9.     Licchelli, M.; Marzolla, S. J.; Poggi, A.; Zanchi, C., Crosslinked fluorinated polyurethanes for the protection of stone surfaces from graffiti. Journal of Cultural Heritage 2011, 12 (1), 34-43.
10.   Mohie, M. A.; Ali, N. M.; Issa, A. A. A. B.; Alkareem, A. A., A NEW METHOD OF LINING OIL PAINTINGS USING POLYURETHANE. Mediterranean Archaeology and Archaeometry 2019, 19 (2), 9-21.
11.   Daudin-Schotte, M.; Bisschoff, M.; Joosten, I.; van Keulen, H. In Dry cleaning approaches for unvarnished paint surfaces, New Insights into the Cleaning of Paintings: Proceedings from the Cleaning 2010 International Conference, Universidad Politécnica de Valencia and Museum Conservation Institute, 2013; pp 209-220.
12.   Cao, C. L.; Cheng, J.; Liu, X. D.; Wang, R.; Zhang, J. Y.; Qu, J.; Jaeger, U., Study of properties of one-component moisture-curable polyurethane and silane modified polyurethane adhesives. Journal of Adhesion Science and Technology 2012, 26 (10-11), 1395-1405.
13.   Szycher, M., Szycher's handbook of polyurethanes. CRC press: 1999.
14.   Al-Emam, E.; Motawea, A. G.; Janssens, K.; Caen, J., Evaluation of polyvinyl alcohol–borax/agarose (PVA–B/AG) blend hydrogels for removal of deteriorated consolidants from ancient Egyptian wall paintings. Heritage Science 2019, 7 (1), 22.
15.   Kanth, A.; Pandey, S. C., Optimizing the rigidity of Gellan and Agar gels for cleaning sensitive acrylic emulsion painted surfaces. International Journal of Conservation Science 2018, 9 (3).
16.   Carretti, E.; Dei, L.; Weiss, R. G.; Baglioni, P., A new class of gels for the conservation of painted surfaces. Journal of cultural heritage 2008, 9 (4), 386-393.
17.   Bakalarou, A.; Theodorakopoulos, C., Cleaning of water-gilded surfaces using hydro-and solvent-gels. e-conservation magazine 2013, 25, 89-105.
18.   Baglioni, P.; Berti, D.; Bonini, M.; Carretti, E.; Dei, L.; Fratini, E.; Giorgi, R., Micelle, microemulsions, and gels for the conservation of cultural heritage. Advances in Colloid and Interface Science 2014, 205, 361-371.
19.   Elsayed, Y., Conservation Of A Historic Panel Oil-painting Coated By An Ancient Varnish Layer. Shedet 2019, 6, 238-256.
20.   Phenix, A., The swelling of artists' paints in organic solvents. Part 2, Comparative swelling powers of selected organic solvents and solvent mixtures. Journal of the American Institute for Conservation 2002, 41 (1), 61-90.
21.   Galatis, P.; Boyatzis, S.; Theodorakopoulos, C., Removal of a synthetic soiling mixture on mastic, shellac & Laropal® K80 coatings using two hydrogels. E-Preservation Sci 2012, 9, 72-83.
22.   Wolbers, R., Cleaning painted surfaces: aqueous methods. 2000.
23.   Petrie, E. M., Handbook of adhesives and sealants. 2000.
24.   Yong-hua, R.; Bian-xia, L.; Xiao-ning, S., Research on the Aging of Natural Fiber Textiles. Advances in Biomedical Engineering 2012, 9, 1.
25.   Wu, Y. C.; Huang, C. M.; Li, Y.; Zhang, R.; Chen, H.; Mallon, P. E.; Zhang, J.; Sandreczki, T. C.; Zhu, D. M.; Jean, Y. C., Deterioration of a polyurethane coating studied by positron annihilation spectroscopy: Correlation with surface properties. Journal of Polymer Science Part B: Polymer Physics 2001, 39 (19), 2290-2301.
26.   Carretti, E.; Natali, I.; Matarrese, C.; Bracco, P.; Weiss, R. G.; Baglioni, P.; Salvini, A.; Dei, L., A new family of high viscosity polymeric dispersions for cleaning easel paintings. Journal of Cultural Heritage 2010, 11 (4), 373-380.
27.   Mastrangelo, R.; Montis, C.; Bonelli, N.; Tempesti, P.; Baglioni, P., Surface cleaning of artworks: structure and dynamics of nanostructured fluids confined in polymeric hydrogel networks. Physical Chemistry Chemical Physics 2017, 19 (35), 23762-23772.
28.   Baglioni, P.; Chelazzi, D.; Giorgi, R., Nanotechnologies in the Conservation of Cultural Heritage: A compendium of materials and techniques. Springer: 2014.
29.   Bonelli, N.; Poggi, G.; Chelazzi, D.; Giorgi, R.; Baglioni, P., Poly (vinyl alcohol)/poly (vinyl pyrrolidone) hydrogels for the cleaning of art. Journal of colloid and interface science 2019, 536, 339-348.
30.   Atodiresei, G. V.; Sandu, I. G.; Tulbure, E. A.; Vasilache, V.; Butnaru, R., Chromatic characterization in CieLab system for natural dyed materials, prior activation in atmospheric plasma type DBD. Revista de Chimie 2013, 64 (2), 165-169.
31.   Schanda, J., Colorimetry: understanding the CIE system. John Wiley & Sons: 2007.
32.   Witkowski, B.; Ganeczko, M.; Hryszko, H.; Stachurska, M.; Gierczak, T.; Biesaga, M., Identification of orcein and selected natural dyes in 14th and 15th century liturgical paraments with high-performance liquid chromatography coupled to the electrospray ionization tandem mass spectrometry (HPLC-ESI/MS/MS). Microchemical Journal 2017, 133, 370-379.
33.   Otłowska, O.; Ślebioda, M.; Kot-Wasik, A.; Karczewski, J.; Śliwka-Kaszyńska, M., Chromatographic and Spectroscopic Identification and Recognition of Natural Dyes, Uncommon Dyestuff Components, and Mordants: Case Study of a 16th Century Carpet with Chintamani Motifs. Molecules 2018, 23 (2), 339.
34.   Foster, D. H., Color appearance. The Senses: A Comprehensive Reference, Vol. 2, Vision II 2008, 119-132.
35.   Mitchell, G.; France, F.; Nordon, A.; Tang, P. L.; Gibson, L. T., Assessment of historical polymers using attenuated total reflectance-Fourier transform infra-red spectroscopy with principal component analysis. Heritage Science 2013, 1 (1), 28.
36.   Odlyha, M.; Theodorakopoulos, C.; Campana, R., Studies on woolen threads from historical tapestries. AUTEX Research Journal 2007, 7 (1), 9-18.
37.   Hofmann-de Keijzer, R.; van Bommel, M. R.; de Keijzer, M., Coptic textiles: Dyes, dyeing techniques and dyestuff analysis of two textile fragments of the MAK Vienna. In Methods of Dating Ancient Textiles of the 1st Millennium AD from Egypt and Neighbouring Countries, Lannoo Publishers: Antwerp, 2007; pp 214–228.
38.   Proniewicz, L. M.; Paluszkiewicz, C.; Wesełucha-Birczyńska, A.; Majcherczyk, H.; Barański, A.; Konieczna, A., FT-IR and FT-Raman study of hydrothermally degradated cellulose. Journal of Molecular Structure 2001, 596 (1-3), 163-169.
39.   Garside, P.; Wyeth, P., Identification of cellulosic fibres by FTIR spectroscopy differentiation of flax and hemp by polarized ATR FTIR. Studies in conservation 2006, 51 (3), 205-211.
40.   Peggie, D. A.; Hulme, A. N.; McNab, H.; Quye, A., Towards the identification of characteristic minor components from textiles dyed with weld (Reseda luteola L.) and those dyed with Mexican cochineal (Dactylopius coccus Costa). Microchimica Acta 2008, 162 (3-4), 371-380.
41.   Marques, R.; Sousa, M. M.; Oliveira, M. C.; Melo, M. J., Characterization of weld (Reseda luteola L.) and spurge flax (Daphne gnidium L.) by high-performance liquid chromatography–diode array detection–mass spectrometry in Arraiolos historical textiles. Journal of chromatography A 2009, 1216 (9), 1395-1402.
42.   Ortega Saez, N.; Vanden Berghe, I.; Schalm, O.; De Munck, B.; Caen, J., Material analysis versus historical dye recipes: ingredients found in black dyed wool from five Belgian archives (1650-1850). Conservar Património 2019, 31, 115-132.
43.   Landi, S., The textile conservator's manual. Routledge: 1998.
44.   Shashoua, Y. In Investigation into the effects of cleaning natural, woven textiles by aqueous immersion, 1990; pp 313-318.
45.   Lennard, F., The art of tapestry conservation. In Tapestry Conservation: Principles and Practice, Routledge: 2006; pp 29-38.
46.   Davis, S. J., Coptic Christology in practice: Incarnation and divine participation in Late Antique and Medieval Egypt. Oxford University Press: 2008.
47.   Pritchard, F., Clothing culture: dress in Egypt in the first millennium AD: clothing from Egypt in the collection of the Whitworth Art Gallery, the University of Manchester. 2006.
48.   Thomas, T. K., Coptic and Byzantine textiles found in Egypt: Corpora, collections, and scholarly perspectives. na: 2007.
49.   Mouri, C.; Aali, A.; Zhang, X.; Laursen, R., Analysis of dyes in textiles from the Chehrabad salt mine in Iran. Heritage Science 2014, 2 (1), 20.
50.   Cooksey, C. J., Indigo: an annotated bibliography. Biotechnic & Histochemistry 2007, 82 (2), 105-125.
51.   Elsayed, Y., Conservation of The Flowers Canvas Painting (1) at The Egyptian Agricultural Museum. Egyptian Journal of Archaeological and Restoration Studies 2019, 9 (1), 39-51.